Data Types and Formats

DR. AMI GATES

Understanding Data Types and Levels of Measurement

Before conducting any analysis, we need to:

- Understand what **type of data** we have **qualitative versus quantitative**.
- Understand the different representations of the data. (M, male, MALE, 0)
- Determine whether the different values are **discrete or continuous**
- Determine if the attribute values are **nominal, ordinal, interval, ratio**, etc.
- Preprocess the data for data analytics

Levels of Measurement: Examples

• Nominal

• Examples: ID numbers, eye color, zip codes

• Ordinal

• Examples: rankings (e.g., taste of potato chips on a scale from 1-10), grades, height in {tall, medium, short}

• Interval

- Examples: calendar dates, temperatures in Celsius or Fahrenheit.
- Ratio
 - Examples: temperature in Kelvin, length, time, counts

• The types of transformations allowed will differ. For example, transformations on ordinal data must preserve the actual order.

Nature of Data - Record Data

Data that consists of a collection of records, each of which consists of a fixed set of attributes - **what types and levels are here**?

ID	Birth Date	Marital Status	Income	Height
1	3/12/1966	Single	125K	tall
2	2/17/1945	Divorced	100K	short
3	1/12/1990	Married	120K	short
4	7/13/1985	Single	90K	medium
5	8/30/1994	Single	150K	tall

Nature of Data – Word Count in Documents

Each document can be viewed as a **term (word)** vector. In a term vector:

- Each term is a component (attribute/variable) of the vector,
- The value of each component is the number of times the corresponding word occurs in the document.
- The first vector here is <3, 0, 5, 0, 1, 4, 0, 1, 1, 3>

	dog	cat	bark	sleep	eat	play	ball	tree	fall	bird
DOC 1	3	0	5	0	1	4	0	1	1	3
DOC 2	0	10	0	2	2	1	0	0	0	3
DOC 3	0	1	0	0	3	4	1	5	0	0

Transaction Data

TID	Bread Coke		Milk	Beer	Diape	r
1	1	1		1	0	0
2	1	0		0	1	0
3	0	1		1	1	1
4	1	0		1	1	1
5	0	1		1	0	1

Nature of Data – Graph/Network Data

A graph can be generated from any data that has objects and connections between those objects.

Network data must be clearly define vertices (nodes) and relationships (edges).

Network Data Example

	A	В	С	D	E		
1	Gillenormand	JeanValjean					
2	Zephine	Listolier					
3	Joly	Feuilly					
4	Brevet	Judge					
5	Bamatabois	JeanValjean					
6	Gavroche	JeanValjean					
7	MadameHucheloup	Courfeyrad					
8	Gavroche	Javert					
9	Count	BishopCharles-Francois-BienvenuMyriel					
10	Dahlia	Listolier					
11	Fantine	JeanValjea	n				
12	Marius	Cosette					
13	MadameHucheloup	Joly					
14	Blacheville	Listolier					
15	Scaufflaire	JeanValjea	n				

Network Example

- Girls' school dormitory dining-table **partner choices** (this is the relationship)
- First and second choices shown as weighted edges.
- The Girls are the nodes (vertices)

Nature of Data – Ordered Data

Data that contains an **ordering** that is important to preserve.

One example is **genomic** data.

The order is critical.

GGTTCCGCCTTCAGCCCGCGCCC CGCAGGGCCCGCCCGCGCGCGCG GAGAAGGGCCCGCCTGGCGGGGCG GGGGGAGGCGGGGGCCGCCCGAGC CCAACCGAGTCCGACCAGGTGCC CCCTCTGCTCGGCCTAGACCTGA GCTCATTAGGCGGCAGCGGACAG GCCAAGTAGAACACGCGAAGCGC TGGGCTGCCTGCTGCGACCAGGG

Nature of Data – Spatio-Temporal Data

http://oscarperpinan.github.io/spacetime-vis/spacetime.html

Nature of Data – Numeric Data Matrix Concept

If data objects have the same fixed set of numeric attributes, then the data objects can be thought of as points in a multidimensional space, where each dimension represents a distinct attribute.

longitude	latitude	temperature	humid	ity I	oressure
139	135	89.5	78		1013
200	33	12.5	32		244
13	9 135	89.5	78	1013	
20	0 33	12.5	32	244	

Where we get data?

- 1) Experiments
- 2) Observational studies
- 3) API Data Gathering

4) Public data examples:

- Government agencies, e.g. Census Bureau
 - CDC, Bureau of Labor Statistics, ...
- Online statistics
- Online markets, e.g. stock market
- Companies built on open data, e.g. Twitter, White Pages, Wikis
- Public profile information, e.g. LinkedIn, Facebook
- Online newspapers/blogs
- Public image galleries
- Kaggle