chapter 12

Recurrent Neural Networks

In chapter 8 we studied neural networks and how we can train the weights of a network, based on data, so that it will adapt into a function that approximates the relationship between the (x, y) pairs in a supervised-learning training set. In section 1 of chapter 10 , we studied state-machine models and defined recurrent neural networks (RNNs) as a particular type of state machine, with a multidimensional vector of real values as the state. In this chapter, we'll see how to use gradient-descent methods to train the weights of an RNN so that it performs a transduction that matches as closely as possible a training set of inputoutput sequences.

1 RNN model

Recall that the basic operation of the state machine is to start with some state s_{0}, then iteratively compute for $t \geqslant 1$::

$$
\begin{aligned}
s_{\mathrm{t}} & =\mathrm{f}\left(s_{\mathrm{t}-1}, x_{\mathrm{t}}\right) \\
y_{\mathrm{t}} & =\mathrm{g}\left(s_{\mathrm{t}}\right)
\end{aligned}
$$

as illustrated in the diagram below (remembering that there needs to be a delay on the feedback loop):

So, given a sequence of inputs x_{1}, x_{2}, \ldots the machine generates a sequence of outputs

$$
\underbrace{g\left(f\left(s_{0}, x_{1}\right)\right)}_{y_{1}}, \underbrace{g\left(f\left(f\left(s_{0}, x_{1}\right), x_{2},\right)\right)}_{y_{2}}, \ldots
$$

A recurrent neural network is a state machine with neural networks constituting functions f and g :

$$
\begin{aligned}
f(s, x) & =f_{1}\left(W^{s x} x+W^{s s} s+W_{0}^{s s}\right) \\
g(s) & =f_{2}\left(W^{O} s+W_{0}^{O}\right)
\end{aligned}
$$

The inputs, outputs, and states are all vector-valued:

$$
\begin{aligned}
& x_{\mathrm{t}}: \ell \times 1 \\
& s_{\mathrm{t}}: \mathrm{m} \times 1 \\
& \mathrm{y}_{\mathrm{t}}: v \times 1 .
\end{aligned}
$$

The weights in the network, then, are

$$
\begin{aligned}
& W^{s x}: m \times \ell \\
& W^{s s}: m \times m \\
& W_{0}^{s s}: m \times 1 \\
& W^{\mathrm{O}}: v \times m \\
& W_{0}^{\mathrm{O}}: v \times 1
\end{aligned}
$$

with activation functions f_{1} and f_{2}. Finally, the operation of the RNN is described by

$$
\begin{aligned}
s_{t} & =f_{1}\left(W^{s x} x_{t}+W^{s s} s_{t-1}+W_{0}^{s s}\right) \\
y_{t} & =f_{2}\left(W^{O} s_{t}+W_{0}^{O}\right) .
\end{aligned}
$$

Study Question: Check dimensions here to be sure it all works out. Remember that we apply f_{1} and f_{2} elementwise.

2 Sequence-to-sequence RNN

Now, how can we train an RNN to model a transduction on sequences? This problem is sometimes called sequence-to-sequence mapping. You can think of it as a kind of regression problem: given an input sequence, learn to generate the corresponding output sequence.

A training set has the form $\left[\left(x^{(1)}, y^{(1)}\right), \ldots,\left(x^{(q)}, y^{(q)}\right)\right]$, where

- $x^{(i)}$ and $y^{(i)}$ are length $n^{(i)}$ sequences;
- sequences in the same pair are the same length; and sequences in different pairs may have different lengths.

Next, we need a loss function. We start by defining a loss function on sequences. There are many possible choices, but usually it makes sense just to sum up a per-element loss function on each of the output values, where p is the predicted sequence and y is the actual one:

$$
\operatorname{Loss}_{s e q}\left(p^{(i)}, y^{(i)}\right)=\sum_{t=1}^{\mathfrak{n}^{(i)}} \operatorname{Loss}_{e l t}\left(p_{t}^{(i)}, y_{t}^{(i)}\right)
$$

The per-element loss function Loss $_{\text {elt }}$ will depend on the type of y_{t} and what information it is encoding, in the same way as for a supervised network.. Then, letting $\theta=$

One way to think of training a sequence classifier is to reduce it to a transduction problem, where $y_{t}=1$ if the sequence x_{1}, \ldots, x_{t} is a positive example of the class of sequences and -1 otherwise.

So it could be NLL, squared loss, etc.
$\left(W^{s x}, W^{s s}, W^{O}, W_{0}^{s s}, W_{0}^{O}\right)$, our overall objective is to minimize

$$
J(\theta)=\sum_{i=1}^{q} \operatorname{Loss}_{s e q}\left(\operatorname{RNN}\left(x^{(i)} ; \theta\right), y^{(i)}\right)
$$

where $\operatorname{RNN}(x ; \theta)$ is the output sequence generated, given input sequence x.
It is typical to choose f_{1} to be tanh but any non-linear activation function is usable. We choose f_{2} to align with the types of our outputs and the loss function, just as we would do in regular supervised learning.

3 Back-propagation through time

Now the fun begins! We can find θ to minimize J using gradient descent. We will work through the simplest method, back-propagation through time (ВРтт), in detail. This is generally not the best method to use, but it's relatively easy to understand. In section 5 we will sketch alternative methods that are in much more common use.

Calculus reminder: total derivative Most of us are not very careful about the difference between the partial derivative and the total derivative. We are going to use a nice example from the Wikipedia article on partial derivatives to illustrate the difference. The volume of a circular cone depends on its height and radius:

$$
V(r, h)=\frac{\pi r^{2} h}{3}
$$

The partial derivatives of volume with respect to height and radius are

$$
\frac{\partial V}{\partial r}=\frac{2 \pi r h}{3} \text { and } \frac{\partial V}{\partial h}=\frac{\pi r^{2}}{3}
$$

They measure the change in V assuming everything is held constant except the single variable we are changing. Now assume that we want to preserve the cone's proportions in the sense that the ratio of radius to height stay constant, then we can't really change one without changing the other. In this case, we really have to think about the total derivative, which sums the "paths" along which r might influence V :

$$
\begin{aligned}
\frac{d V}{d r} & =\frac{\partial V}{\partial r}+\frac{\partial V}{\partial h} \frac{d h}{d r} \\
& =\frac{2 \pi r h}{3}+\frac{\pi r^{2}}{3} \frac{d h}{d r} \\
\frac{d V}{d h} & =\frac{\partial V}{\partial h}+\frac{\partial V}{\partial r} \frac{d r}{d h} \\
& =\frac{\pi r^{2}}{3}+\frac{2 \pi r h}{3} \frac{d r}{d h}
\end{aligned}
$$

Just to be completely concrete, let's think of a right circular cone with a fixed angle $\alpha=\tan r / h$, so that if we change r or h then α remains constant. So we have $r=h \tan ^{-1} 1 \alpha$; let constant $c=\tan ^{-1} \alpha$, so now $r=c h$. Now, we know that

$$
\begin{aligned}
& \frac{d V}{d r}=\frac{2 \pi r h}{3}+\frac{\pi r^{2}}{3} \frac{1}{c} \\
& \frac{d V}{d h}=\frac{\pi r^{2}}{3}+\frac{2 \pi r h}{3} c
\end{aligned}
$$

The BPTT process goes like this:
(1) Sample a training pair of sequences (x, y); let their length be n.
(2) "Unroll" the RNN to be length n (picture for $n=3$ below), and initialize s_{0} :

Now, we can see our problem as one of performing what is almost an ordinary backpropagation training procedure in a feed-forward neural network, but with the difference that the weight matrices are shared among the layers. In many ways, this is similar to what ends up happening in a convolutional network, except in the convnet, the weights are re-used spatially, and here, they are re-used temporally.
(3) Do the forward pass, to compute the predicted output sequence p :

$$
\begin{aligned}
& z_{t}^{1}=W^{s x} x_{t}+W^{s s} s_{t-1}+W_{0}^{s s} \\
& s_{t}=f_{1}\left(z_{t}^{1}\right) \\
& z_{t}^{2}=W^{O} s_{t}+W_{0}^{O} \\
& p_{t}=f_{2}\left(z_{t}^{2}\right)
\end{aligned}
$$

(4) Do backward pass to compute the gradients. For both $W^{s s}$ and $W^{s x}$ we need to find

$$
\begin{equation*}
\frac{\mathrm{dL}_{\text {seq }}}{\mathrm{dW}}=\sum_{u=1}^{n} \frac{\mathrm{dL}_{\mathfrak{u}}}{\mathrm{dW}} \tag{12.1}
\end{equation*}
$$

Letting $\mathrm{L}_{\mathfrak{u}}=\mathrm{L}_{\mathrm{elt}}\left(\mathrm{p}_{\mathfrak{u}}, \mathrm{y}_{\mathfrak{u}}\right)$ and using the total derivative, which is a sum over all the ways in which W affects L_{u}, we have

$$
\begin{equation*}
=\sum_{u=1}^{n} \sum_{t=1}^{n} \frac{\partial L_{u}}{\partial s_{t}} \cdot \frac{\partial s_{t}}{\partial W} \tag{12.2}
\end{equation*}
$$

Re-organizing, we have

$$
\begin{equation*}
=\sum_{t=1}^{n} \frac{\partial s_{t}}{\partial W} \cdot \sum_{u=1}^{n} \frac{\partial L_{u}}{\partial s_{t}} \tag{12.3}
\end{equation*}
$$

Because s_{t} only affects $L_{t}, L_{t+1}, \ldots, L_{n}$,

$$
\begin{align*}
& =\sum_{t=1}^{n} \frac{\partial s_{t}}{\partial W} \cdot \sum_{u=t}^{n} \frac{\partial L_{u}}{\partial s_{t}} \\
& =\sum_{t=1}^{n} \frac{\partial s_{t}}{\partial W} \cdot(\frac{\partial L_{t}}{\partial s_{t}}+\underbrace{\sum_{u=t+1}^{n} \frac{\partial L_{u}}{\partial s_{t}}}_{\delta^{s_{t}}}) \tag{12.4}
\end{align*}
$$

$\delta^{s_{t}}$ is the dependence of the loss on steps after t on the state at time t. \qquad That is, $\delta^{s_{t}}$ is how much we can blame state s_{t} for all the future element losses.

$$
F_{t}=\sum_{u=t+1}^{n} \operatorname{Loss}_{e l t}\left(p_{u}, y_{u}\right)
$$

so

$$
\delta^{s_{t}}=\frac{\partial F_{t}}{\partial s_{t}}
$$

At the last stage, $\mathrm{F}_{\mathrm{n}}=0$ so $\delta^{\mathrm{s}_{\mathrm{n}}}=0$.
Now, working backwards,

$$
\begin{aligned}
\delta^{s_{t-1}} & =\frac{\partial}{\partial s_{t-1}} \sum_{u=t}^{n} \operatorname{Loss}_{\mathrm{elt}}\left(p_{u}, y_{u}\right) \\
& =\frac{\partial s_{t}}{\partial s_{t-1}} \cdot \frac{\partial}{\partial s_{t}} \sum_{u=t}^{n} \operatorname{Loss}_{e l t}\left(p_{u}, y_{u}\right) \\
& =\frac{\partial s_{t}}{\partial s_{t-1}} \cdot \frac{\partial}{\partial s_{t}}\left[\operatorname{Loss}_{e l t}\left(p_{t}, y_{t}\right)+\sum_{u=t+1}^{n} \operatorname{Loss}_{e l t}\left(p_{u}, y_{u}\right)\right] \\
& =\frac{\partial s_{t}}{\partial s_{t-1}} \cdot\left[\frac{\partial \operatorname{Loss}_{e l t}\left(p_{t}, y_{t}\right)}{\partial s_{t}}+\delta^{s_{t}}\right]
\end{aligned}
$$

Now, we can use the chain rule again to find the dependence of the element loss at time t on the state at that same time,

$$
\underbrace{\frac{\partial \operatorname{Loss}_{\mathrm{elt}}\left(p_{t}, y_{t}\right)}{\partial s_{t}}}_{(m \times 1)}=\underbrace{\frac{\partial z_{t}^{2}}{\partial s_{t}}}_{(m \times v)} \cdot \underbrace{\frac{\partial \operatorname{Loss}_{\mathrm{elt}}\left(p_{t}, y_{t}\right)}{\partial z_{t}^{2}}}_{(v \times 1)},
$$

and the dependence of the state at time t on the state at the previous time, noting that we are performing an elementwise multiplication between $W_{s s}^{\top}$ and the vector of $f^{1^{\prime}}$ values, $\partial s_{\mathrm{t}} / \partial z_{\mathrm{t}}^{1}$:

$$
\underbrace{\frac{\partial s_{t}}{\partial s_{t-1}}}_{(\mathfrak{m} \times \mathfrak{m})}=\underbrace{\frac{\partial z_{t}^{1}}{\partial s_{t-1}}}_{(\mathfrak{m} \times \mathfrak{m})} \cdot \underbrace{\frac{\partial s_{t}}{\partial z_{t}^{1}}}_{(m \times 1)}=\underbrace{W^{s s T} * f^{1^{\prime}}\left(z_{t}^{1}\right)}_{\text {not dot! }}
$$

Putting this all together, we end up with

$$
\delta^{s_{t-1}}=\underbrace{W^{s s T} * f^{1^{\prime}}\left(z_{t}^{1}\right)}_{\frac{\partial s_{t}}{\partial s_{t-1}}} \cdot \underbrace{\left(W^{O^{\top}} \frac{\partial L_{t}}{\partial z_{t}^{2}}+\delta^{s_{t}}\right)}_{\frac{\partial F_{t-1}}{\partial s_{t}}}
$$

There are two ways to think about $\partial s_{\mathrm{t}} / \partial z_{\mathrm{t}}$: here, we take the view that it is an $m \times 1$ vector and we multiply each column of W^{\top} by it. Another, equally good, view, is that it is an $m \times$ m diagonal matrix, with the values along the diagonal, and then this operation is a matrix multiply. Our software implementation will take the first view.

We're almost there! Now, we can describe the actual weight updates. Using equation 12.4 and recalling the definition of $\delta^{s_{t}}=\partial \mathrm{F}_{\mathrm{t}} / \partial s_{t}$, as we iterate backwards, we can accumulate the terms in equation 12.4 to get the gradient for the whole loss:

$$
\begin{aligned}
\frac{d L_{\text {seq }}}{d W^{s s}}+ & =\frac{\partial F_{t-1}}{\partial W^{s s}}=\frac{\partial z_{t}^{1}}{\partial W^{s s}} \frac{\partial s_{\mathrm{t}}}{\partial z_{\mathrm{t}}^{1}} \frac{\partial F_{\mathrm{t}-1}}{\partial s_{\mathrm{t}}} \\
\frac{d \mathrm{~L}_{\text {seq }}}{\mathrm{d} W^{s x}}+ & =\frac{\partial F_{\mathrm{t}-1}}{\partial W^{s x}}=\frac{\partial z_{\mathrm{t}}^{1}}{\partial W^{s x}} \frac{\partial s_{\mathrm{t}}}{\partial z_{\mathrm{t}}^{1}} \frac{\partial F_{\mathrm{t}-1}}{\partial s_{\mathrm{t}}}
\end{aligned}
$$

We can handle W^{O} separately; it's easier because it does not effect future losses in the way that the other weight matrices do:

$$
\frac{\partial \mathrm{L}_{\text {seq }}}{\partial W^{O}}=\sum_{\mathrm{t}=1}^{n} \frac{\partial \mathrm{~L}_{\mathrm{t}}}{\partial W^{O}}=\sum_{\mathrm{t}=1}^{n} \frac{\partial \mathrm{~L}_{\mathrm{t}}}{\partial z_{\mathrm{t}}^{2}} \cdot \frac{\partial z_{\mathrm{t}}^{2}}{\partial W^{\mathrm{O}}}
$$

Assuming we have $\frac{\partial L_{t}}{\partial z_{t}^{2}}=\left(p_{t}-y_{t}\right)$, (which ends up being true for squared loss, softmax-NLL, etc.), then on each iteration

$$
\underbrace{\frac{\partial \mathrm{L}_{\text {seq }}}{\partial W^{O}}}_{v \times \mathrm{m}}+=\underbrace{\left(p_{\mathrm{t}}-y_{\mathrm{t}}\right)}_{v \times 1} \cdot \underbrace{s_{\mathrm{t}}^{\mathrm{T}}}_{1 \times \mathrm{m}}
$$

Whew!

Study Question: Derive the updates for the offsets $W_{0}^{s s}$ and W_{0}^{0}.

4 Training a language model

A language model is just trained on a set of input sequences, $\left(c_{1}^{(i)}, c_{2}^{(i)}, \ldots, c_{n^{i}}^{(i)}\right)$, and is used to predict the next character, given a sequence of previous tokens: \qquad

$$
c_{t}=\operatorname{RNN}\left(c_{1}, c_{2}, \ldots, c_{t-1}\right)
$$

We can convert this to a sequence-to-sequence training problem by constructing a data set of (x, y) sequence pairs, where we make up new special tokens, start and end, to signal the beginning and end of the sequence:

$$
\begin{aligned}
& x=\left(\langle\text { start }\rangle, c_{1}, c_{2}, ; c_{n}\right) \\
& y=\left(c_{1}, c_{2}, \ldots,\langle\text { end }\rangle\right)
\end{aligned}
$$

5 Vanishing gradients and gating mechanisms

Let's take a careful look at the backward propagation of the gradient along the sequence:

$$
\delta^{s_{t-1}}=\frac{\partial s_{t}}{\partial s_{t-1}} \cdot\left[\frac{\partial \operatorname{Loss}_{e l t}\left(p_{t}, y_{t}\right)}{\partial s_{t}}+\delta^{s_{t}}\right] .
$$

Consider a case where only the output at the end of the sequence is incorrect, but it depends critically, via the weights, on the input at time 1 . In this case, we will multiply the loss at step n by

$$
\frac{\partial s_{2}}{\partial s_{1}} \cdot \frac{\partial s_{3}}{\partial s_{2}} \cdots \frac{\partial s_{n}}{\partial s_{n-1}}
$$

In general, this quantity will either grow or shrink exponentially with the length of the sequence, and make it very difficult to train.
Study Question: The last time we talked about exploding and vanishing gradients, it was to justify per-weight adaptive step sizes. Why is that not a solution to the problem this time?

An important insight that really made recurrent networks work well on long sequences is the idea of gating.

5.1 Simple gated recurrent networks

A computer only ever updates some parts of its memory on each computation cycle. We can take this idea and use it to make our networks more able to retain state values over time and to make the gradients better-behaved. We will add a new component to our network, called a gating network. Let g_{t} be a $m \times 1$ vector of values and let $W^{g x}$ and $W^{g s}$ be $m \times l$ and $m \times m$ weight matrices, respectively. We will compute g_{t} as \qquad

$$
g_{t}=\operatorname{sigmoid}\left(W^{g x} x_{t}+W^{g s} s_{t-1}\right)
$$

and then change the computation of s_{t} to be

$$
s_{t}=\left(1-g_{t}\right) * s_{t-1}+g_{t} * f_{1}\left(W^{s x} x_{t}+W^{s s} s_{t-1}+W_{0}^{s s}\right)
$$

where $*$ is component-wise multiplication. We can see, here, that the output of the gating network is deciding, for each dimension of the state, how much it should be updated now. This mechanism makes it much easier for the network to learn to, for example, "store" some information in some dimension of the state, and then not change it during future state updates, or change it only under certain conditions on the input or other aspects of the state.
Study Question: Why is it important that the activation function for g be a sigmoid?

5.2 Long short-term memory

The idea of gating networks can be applied to make a state-machine that is even more like a computer memory, resulting in a type of network called an LSTM for "long short-term memory." We won't go into the details here, but the basic idea is that there is a memory cell (really, our state vector) and three (!) gating networks. The input gate selects (using a "soft" selection as in the gated network above) which dimensions of the state will be updated with new values; the forget gate decides which dimensions of the state will have its old values moved toward 0 , and the output gate decides which dimensions of the state will be used to compute the output value. These networks have been used in applications like language translation with really amazing results. A diagram of the architecture is shown below:

Yet another awesome name for a neural network!

