
K Means Clustering and
Intro to EM
-Alternating Optimization,
-Distance Metrics

Gates

Clustering: Grouping - Categorizing

1) Clustering is “unsupervised”. This means that the data is not labeled or categorized.

2) Clustering is used to “discover” if groups/categories exist and if so – what they are.

3) Clustering can be used to determine if the data in a dataset fits into any type of
groups/categories/classes.

4) If categories can be identified, this information then be used to classify or predict
other vectors.

5) Clustering reduces dimensionality.

6) Clustering can be used to create labels.

7) Clustering is a special case of alternating optimization/EM via Lloyd’s Algorithm

What is a VECTOR (in a dataset)?

Common Clustering Categories

• Partitional Clustering (such as k – means): divides data objects into
nonoverlapping groups. No object can be a member of more than one
cluster, and every cluster must have at least one object.

• Hierarchical Clustering : determines cluster assignments by building a
hierarchy. This is implemented by either a bottom-up or a top-down
approach. These methods produce a tree-based hierarchy of points called a
dendrogram. - Agglomerative or divisive

• Density Based Clustering : determines cluster assignments based on the
density of data points in a region. This approach doesn’t require the user
to specify the number of clusters. Instead, there is a distance-based
parameter that acts as a tunable threshold. Example : DBSCAN (Density-
Based Spatial Clustering of Applications with Noise)

Applications of clustering
1) There are an enormous number of applications for clustering, as clustering is a method for
discovering similarity (and differences) between data vectors/rows.

2) One can cluster books, articles, or documents by topics.

3) Once can cluster customers by common attributes – such as purchase similarities, location
similarities, expenditure similarities, etc.

4) One can cluster social data by attributes such as common interests, common career areas, etc.

5) One can cluster radiation data collected from objects is space to determine if they are star,
planets, galaxies, etc.

6) One can cluster music into categories – think about this for a second – how do you think
Pandora does this?

Clustering can also be used for outlier detection. This is especially true for visual EDA (exploratory
data analysis).

Example: Market Segmentation

Suppose your company makes t-shirts.

T-shirts cannot come in an infinite number of sizes ☺

You, as the owner or manager, will determine how many sizes you want to
manufacture (this is your k).

Then, you can collect data (a sample from your buyer population) that
includes weight and height. [You will do this likely by gender as well.]

You will then cluster this data using a method like k means to determine
the centroid (average height and weight in this case) of each of your
clusters.

Example 2: College Admissions

Suppose it is your job to analyze and then suggest methods to improve college admissions.

You have all the admissions data from the past 10 years. Your data is labeled as Admit, Decline, and
Waitlist.

You can apply clustering to the data (after you remove the labels) to answer many questions. Here, your
first k is 3, but you can also experiment with other k values. Why?

Before performing k means clustering, assume that you assure only quantitate data and you remove and
save the labels.

Questions you can explore:

1) Do your labels match the cluster centroids (using k = 3)?

2) Which features appear significant?

3) What is the average GPA of students in each cluster? What are other average scores in each cluster?

4) etc.

Common Clustering Categories

• Partitional Clustering (such as k – means): divides data objects into
nonoverlapping groups. No object can be a member of more than one
cluster, and every cluster must have at least one object.

• Hierarchical Clustering : determines cluster assignments by building a
hierarchy. This is implemented by either a bottom-up or a top-down
approach. These methods produce a tree-based hierarchy of points called a
dendrogram. - Agglomerative or divisive

• Density Based Clustering : determines cluster assignments based on the
density of data points in a region. This approach doesn’t require the user
to specify the number of clusters. Instead, there is a distance-based
parameter that acts as a tunable threshold. Example : DBSCAN (Density-
Based Spatial Clustering of Applications with Noise)

Clustering Uses a Measure of Distance or Similarity

Distance by Hand…Which is “closer” – rows 1 and 2
OR 1 and 3?

Using Manhattan:

Dist(1, 2):
[251 267 70]
[105 103 62]

|(251-105)| + |(267-103)| + |(70-62)| = 318

Dist(1, 3)
[251 267 70]
[156 193 72]

abs(251-156) + abs(267-193) + abs(70-72) = 171

Note: The L3 norm, cubes the
differences and so no.

The L1 norm is often called
the Manhattan distance as it
is based on the idea of “block
distance” rather than point to
point direct distance.

Cosine Similarity is non-
Euclidean.

import numpy as np

def cosine_sim(x, y):
 x = np.array(x)
 y = np.array(y)

 if len(x) != len(y) :
 return None

 dot_product = np.dot(x, y.T)

 # Magnitudes of x and y
 magnitude_x = np.sqrt(np.sum(x**2))
 magnitude_y = np.sqrt(np.sum(y**2))

 # Cosine Sim and angle as degrees
 cos_sim = dot_product / (magnitude_x *
magnitude_y)
 angle=np.arccos(cos_sim)
 angle=np.degrees(angle)

 return cos_sim, angle

CS, Cos_angle=cosine_sim([[251,267,70]], [[105,103,62]])

print(CS)
print(Cos_angle)

from sklearn.metrics.pairwise import cosine_similarity
import pandas as pd

DF = pd.read_csv("C:/Users/profa/Desktop/UCB/ML
CSCI 5622/Data/HeartRisk_JustNums.csv")

print(cosine_similarity(DF, DF))

Cosine Similarity – by hand – in Python

Cosine similarity

 Good for high D data.

1) Imagine that each row or data vector is a numerical vector.

2) Next, no matter what dimension you are using, the origin is (0, 0, …0)

So in 2D the origin is (0,0) in 3D its (0,0,0) and so on.

3) Next, Any two vector points in any D space create an angle between them.

4) The COS of any angle is defined as the normalized dot product:

(V1 . V2) / |V1| |V2|

Example: Suppose vector 1 (V1) is [1, 3] and suppose vector 2 (V2) is [2,2]

Then, the dot product V1 . V2 = (1*2) + (3*2) = 8

Next, |V1| = sqrt(1^2 + 3^2) = sqrt(10)

|V2| = sqrt(2^2 + 2^2) = sqrt(8)

So COS() = 8 / (sqrt(8)*sqrt(10)) = .894

To solve for the angle, find the arccos (.894) = 26.6 degrees

Non-Euclidean distances

http://infolab.stanford.edu/~ullman/mining/pdf/cs345-cl.pdf

Some fun math: the axioms of a distance
measure

1) For any measure D to be a “distance measure” it must meet the
following properties:

(a) Given any two vectors x and y, D(x,y) >= 0. In other words,

distance cannot be negative.

(b) D(x, y) = 0 iff x = y. In other words, the only way the distance

between two vectors is 0 is if they are the same vector.

(c) D(x,y) = D(y,x). Direction does not matter.

(d) D(x, y) <= D(x,z) + D(z,y). This is called the Triangle Inequality.

Partition vs. Hierarchical

SEPTEMBER 14, 2020 18

1) It is not
necessary to
choose or
preselect the
number of
clusters.
2) Hierarchical
clusterings may
correspond
well to
taxonomies –
such as the
animal
kingdom.

AGNES and DIANA

Hierarchical clustering can be divided into two main types:

Agglomerative clustering: Commonly referred to as AGNES (AGglomerative NESting) works in a bottom-up
manner. Each observation (vector or row) is initially considered as a single-element cluster.

At each step of the algorithm, the two clusters that are the most similar are combined into a new bigger
cluster. This procedure is iterated until all points are a member of just one single big cluster

Divisive hierarchical clustering: Commonly referred to as DIANA (DIvise ANAlysis) works in a top-down
manner.

Begins with the root - all observations (all rows) are in a single cluster. At each step of the algorithm, the
current cluster is split into two clusters that are considered most heterogeneous. The process is iterated
until all observations are in their own cluster.

Common Clustering Methods (FYI only)
· Maximum or complete linkage clustering: Computes all pairwise dissimilarities between the
elements in cluster 1 and the elements in cluster 2, and considers the largest value of these
dissimilarities as the distance between the two clusters. It tends to produce more compact clusters.

· Minimum or single linkage clustering: Computes all pairwise dissimilarities between the elements in
cluster 1 and the elements in cluster 2, and considers the smallest of these dissimilarities as a
linkage criterion. It tends to produce long, “loose” clusters.

· Mean or average linkage clustering: Computes all pairwise dissimilarities between the elements in
cluster 1 and the elements in cluster 2, and considers the average of these dissimilarities as the
distance between the two clusters. Can vary in the compactness of the clusters it creates.

· Centroid linkage clustering: Computes the dissimilarity between the centroid for cluster 1 (a mean
vector of length p, one element for each variable) and the centroid for cluster 2.

· Ward’s minimum variance method: Minimizes the total within-cluster variance. At each step the
pair of clusters with the smallest between-cluster distance are merged. Tends to produce more
compact clusters.

https://bradleyboehmke.github.io/HOML/hierarchical.html

Types of Clusters: Density-Based

Density-based
◦ A cluster is a dense region of points, which is separated by

low-density regions, from other regions of high density.

◦ Used when the clusters are irregular or intertwined, and when
noise and outliers are present.

Limitation of k-means

Visual Example of k - means

› 1) Choose k

› 2) Randomly choose k centroids

› 3) Place all points into one of the k clusters based on
distance.

› 4) Update the centroids

› 5) Re-assign points to closest cluster

Repeat steps 4 and 5 for N iterations

Choose k
= 3

Randomly Choose Initial Centroids

Place Points into Closest Cluster

Update Centroids

Re- calculate ALL
distances from
points to
centroids and re-
assign points to
centroids as
needed.

Recalculate
Centroids

Choosing k: Elbow Method

› Elbow Method : There is an “bending” point where the SSE (sum
squared error) curve starts to bend known as the elbow point. The x-
value of this point is thought to be a reasonable trade-off between
error and number of clusters. The elbowpoint is the point where the
rate of decrease of mean distance (from points to their centroid) will
not change significantly with increase in number of clusters.

Silhouette Method

› Silhouette Coefficient : is a
measure of cluster cohesion
and separation. It quantifies
how well a data point fits into
its assigned cluster based on
two factors: How close the
data point is to other points
in the cluster and how far
away the data point is from
points in other clusters.

› Silhouette coefficient values
range between -1 and 1.
Larger numbers indicate that
samples are closer to their
clusters than they are to other
clusters.

library("factoextra")
(fviz_nbclust(MyDF, kmeans, method='silhouette', k.max=5))

Part 2
The Math and Code Behind K Means

The Code

By Hand – In Python

https://gatesboltonanalytics.com/?page_id=924

Using Sklearn in Python

https://gatesboltonanalytics.com/?page_id=262

and

https://scikit-
learn.org/stable/modules/generated/sklearn.cluster
.KMeans.html

https://gatesboltonanalytics.com/?page_id=924
https://gatesboltonanalytics.com/?page_id=262
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html

K Means – the Math and EM

Suppose we have a dataset {x1, x2, ...,xn}

We choose k, the number of clusters.

Let µk be the centroid (mean) of cluster k.

Goal: Assignment points to clusters so that the sum of the
square distances between points and their closest cluster
is minimized.

For each datapoint xn, let rik in {0,1} be a binary indicator
function such that if xn is assigned to µk then rnk = 1.

What is our Loss (or Objective) Function that
we want to Optimize?

Our goal is to find values of µk and rik that minimize L.

Steps:

Initialization: Choose µk

1) E Step: Update rik

Minimize L wrt rik while keeping µk fixed.

To do this, we place points into their closest clusters.

2) M Step: Update µk

Update L wrt µk while keeping fixed rik .

To do this, we recalculate each cluster mean, µk, based on the
points in those clusters.

3) Repeat until convergence. Note that convergence may not be
to a global min.

Make sure it makes sense loss-wise

The Math: The best rik

The E Step:

› All data points are considered to be independent.

› Therefore, we can choose rik to be 1 for whichever k gives
the minimum value of ||xi - µk

 ||2. This just means that
we can place all the points in their “closest” clusters.

The Math: The best mean

The M Step: Updating µk with rik fixed.

Take dL/drik = 2 ∑n rik(xi- µk
)

Set this to 0 and solve.
We get:

µk = ∑n rik xi/ ∑n rik

Here, the denominator is the number of points
assigned to cluster k (because otherwise it is 0).

So in short, this is just the mean (average) of the points
in each cluster for all k clusters.

In Summary

1) First, choose k.
2) Next, randomly choose points to represent each cluster center.

Repeat Until Convergence

Here, we repeat the EM steps until we converge.

Convergence may not result in a global min.

In words, the two phases are:

E: Reassign points (this updates rik)

M: Calculate the mean (this updates µk)

For K-means, The Expectation(E) step is where each data
point is assigned to the “nearest” cluster and the
Maximization(M) step is where the centroids are
recomputed using the mean of the points in that centroid.

Notes

1) The K means algorithm is generally based on the use of
the Euclidean distance and the measure of similarity.

2) This limits the type of data that can be considered as “it
would be inappropriate for cases where some or all of
the variables represented categorical labels” (Bishop,
2006)

Part 3:
Mild Introduction to Expectation
Maximization for Gaussian Mixture Models

Expectation Maximization (EM)
› The Expectation-Maximization algorithm is a very influential and widely
used machine learning algorithm.

› K-means is special variant of the EM algorithm with the assumption that
the clusters are spherical and we use only the mean to determine a
cluster centroid (not a standard deviation as well).

› EM is a method to find the maximum likelihood estimate of parameters,
θ, in a latent variable model.

› EM is made up of an “E” step and an “M” step. It starts with random
values for the parameters, θ, and then alternates between:

• In the E step, the algorithm computes the latent variables - expectation
of the log-likelihood using the current parameter estimates.

• In the M step, the algorithm determines the parameters that maximize the
expected log-likelihood obtained in the E step, and corresponding model
parameters are updated based on the estimated latent variables.

Example:
› Suppose you are a hiker and are interested in the temperature and humidity distribution

during both summer and winter in Colorado.

› You ask a friend who lives in CO to gather N temperature and humidity datapoints so you
can calculate the mean and variance. You are assuming a gaussian distribution.

› BUT, (pretend with me here), your friend gives you the N datapoints *without* telling you
whether they were gathered them during summer or winter.

› In this case, the season (summer or winter) is now a latent variable.

› Next, at this moment, we are missing two bits of information. For any given datapoint, we do
not know the season it was gathered in. In addition, we also do not know the mean and
variance for each season.

› One more note: If we knew which season (summer or winter) each datapoint came from, we
could solve this fast. Just take the mean and variance for the points gathered in that
season. But we don’t!

› Also, if we knew the mean and variance for each season, then we could place all datapoints
into the correct gaussian (season) based on which it is closer to. But we don’t.

› In cases like these, we use EM.

EM Assumptions and a Random Start

In EM (and in kmeans) - we must know “k”.

In k means, k is the number of clusters (latent variables) we have. In EM, it is the number of distributions (latent)
that we have.

In our example, we have k = 2, Summer and Winter.

› Next, in EM, we start the algorithm by randomly choosing our parameters and then assigning all points to
whichever they are “closest to”. Technically, we need to ML here – but we will come back to that.

› In k-means, this was easy because our “parameters” are just the means of our centroids. We can initialize
kmeans by randomly choosing our initial centroids (means).

› However, suppose we have a Gaussian Mixture instead. This means we have two parameters: mean and
variance for each Gaussian. We will still choose them randomly and we will still “assign” all the points to them
based on a measure of similarity. However, assigning points in k means only requires a distance metric (like
Euclidean distance). Assigning points to gaussians is a little bit more complicated (but not much!)

› NOTE: Mahalanobis Distance is used to measure the “distance” between a datapoint and a gaussian
distribution.

EM for Gaussian Mixture Models (GMMs)

› Note that EM can be applied broadly. GMMs is one
example that is useful in explaining how EM works.

› To explain EM as applied to GMM, we will need to gain
some understanding of GMM, of Maximum Likelihood
(ML), and then of EM.

Gaussian Mixture Models

p(zk=1) = πk where

z defines a “cluster” –

in this case – a

Gaussian.

For example, if we have a

mixture of 3 Gaussians, then a

point x can be a member of a

gaussian with probability such

that the sum of the probabilities

is 1.

If zk = 1,

This is a Gaussian
mixture
distribution. It is a
true probability and
it sums to 1.

Here, we are
looking at GMs in
terms of discrete
latent variables.

References

1) Bishop’s Book

https://www.microsoft.com/en-
us/research/uploads/prod/2006/01/Bishop-Pattern-
Recognition-and-Machine-Learning-2006.pdf

2)

https://www.microsoft.com/en-us/research/uploads/prod/2006/01/Bishop-Pattern-Recognition-and-Machine-Learning-2006.pdf
https://www.microsoft.com/en-us/research/uploads/prod/2006/01/Bishop-Pattern-Recognition-and-Machine-Learning-2006.pdf
https://www.microsoft.com/en-us/research/uploads/prod/2006/01/Bishop-Pattern-Recognition-and-Machine-Learning-2006.pdf

	Slide 1: K Means Clustering and Intro to EM -Alternating Optimization, -Distance Metrics
	Slide 2: Clustering: Grouping - Categorizing
	Slide 3: What is a VECTOR (in a dataset)?
	Slide 4
	Slide 5: Common Clustering Categories
	Slide 6: Applications of clustering
	Slide 7: Example: Market Segmentation
	Slide 8: Example 2: College Admissions
	Slide 9: Common Clustering Categories
	Slide 10: Clustering Uses a Measure of Distance or Similarity Distance by Hand…Which is “closer” – rows 1 and 2 OR 1 and 3?
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15: Cosine similarity
	Slide 16: Non-Euclidean distances
	Slide 17: Some fun math: the axioms of a distance measure
	Slide 18: Partition vs. Hierarchical
	Slide 19
	Slide 20
	Slide 21: AGNES and DIANA
	Slide 22: Common Clustering Methods (FYI only)
	Slide 23
	Slide 24
	Slide 25: Types of Clusters: Density-Based
	Slide 26: Limitation of k-means
	Slide 27
	Slide 28: Visual Example of k - means
	Slide 29: Choose k = 3
	Slide 30: Randomly Choose Initial Centroids
	Slide 31: Place Points into Closest Cluster
	Slide 32: Update Centroids
	Slide 33: Re- calculate ALL distances from points to centroids and re-assign points to centroids as needed.
	Slide 34: Recalculate Centroids
	Slide 35
	Slide 36: Choosing k: Elbow Method
	Slide 37: Silhouette Method
	Slide 38
	Slide 39: Part 2
	Slide 40: The Code
	Slide 41: K Means – the Math and EM
	Slide 42: What is our Loss (or Objective) Function that we want to Optimize?
	Slide 43: Steps:
	Slide 44: Make sure it makes sense loss-wise
	Slide 45: The Math: The best rik
	Slide 46: The Math: The best mean
	Slide 47: In Summary 1) First, choose k. 2) Next, randomly choose points to represent each cluster center.
	Slide 48: Repeat Until Convergence
	Slide 49
	Slide 50: Notes
	Slide 51: Part 3:
	Slide 52: Expectation Maximization (EM)
	Slide 53: Example:
	Slide 54: EM Assumptions and a Random Start
	Slide 55: EM for Gaussian Mixture Models (GMMs)
	Slide 56: Gaussian Mixture Models
	Slide 57
	Slide 58
	Slide 59: References

