K Means Clustering and
Intro to EM

-Alternating Optimization,
-Distance Metrics

Gates
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Clustering: Grouping - Categorizing

1) Clustering is “unsupervised”. This means that the data is not labeled or categorized.
2) Clustering is used to “discover” if groups/categories exist and if so - what they are.

3) Clustering can be used to determine if the data in a dataset fits into any type of
groups/categories/classes.

4) If categories can be identified, this information then be used to classify or predict
other vectors.

5) Clustering reduces dimensionality.
6) Clustering can be used to create labels.
7) Clustering is a special case of alternating optimization/EM via Lloyd’s Algorithm




What is a VECTOR (in a dataset)?

Height  Weight Age Height  Weight Age GPA TestScore
84 250 17 ) 84 250 Yy, 3.8 994
72 200 16 1 72 200 16 3.5 876
70 210 15 1 70 210 15 3.6 769
86 278 18 ) 86 278 18 3.8 901
74 190 15 { 74 190 15 3.4 899
80 245 16 ) 80 245 16 39 955
79 267 19 ) 79 267 19 4 850
71 187 15 1 7l 187 15 3.6 900
69 211 14 f 69 211 14 3.7 700
82 289 17 > 82 289 17 3.9 941
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Common Clustering Categories

Partitional Clustering (such as k — means): divides data objects into
nonoverlapping groups. No object can be a member of more than one
cluster, and every cluster must have at least one object.

Hierarchical Clustering : determines cluster assignments by building a
hierarchy. This is implemented by either a bottom-up or a top-down
approach. These methods produce a tree-based hierarchy of points called a
dendrogram. - Agglomerative or divisive

Density Based Clustering : determines cluster assignments based on the
density of data points in a region. This approach doesn’t require the user
to specify the number of clusters. Instead, there is a distance-based
parameter that acts as a tunable threshold. Example : DBSCAN (Density-
Based Spatial Clustering of Applications with Noise)




Applications of clustering

1) There are an enormous number of applications for clustering, as clustering is a method for
discovering similarity (and differences) between data vectors/rows.

2) One can cluster books, articles, or documents by topics.

3) Once can cluster customers by common attributes - such as purchase similarities, location
similarities, expenditure similarities, etc.

4) One can cluster social data by attributes such as common interests, common career areas, etc.

5) One can cluster radiation data collected from objects is space to determine if they are star,
planets, galaxies, etc.

6) One can cluster music into categories — think about this for a second - how do you think
Pandora does this?

Clustering can also be used for outlier detection. This is especially true for visual EDA (exploratory
data analysis).




T-shirt sizing

Example: Market Segmentation

Weight

Suppose your company makes t-shirts. s o o

v

T-shirts cannot come in an infinite number of sizes © Height

You, as the owner or manajger, will determine how many sizes you want to
manufacture (this is your k).

Then, you can collect data (a sample from your buyer population) that
iIncludes weight and height. fYou will do this likely by gender as well.

You will then cluster this data using a method like k means to determine
tTe g[:entrmd (average height and weight in this case) of each of your
clusters.
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Example 2: College Admissions

Suppose it is your job to analyze and then suggest methods to improve college admissions.

Wq Pave all the admissions data from the past 10 years. Your data is labeled as Admit, Decline, and
altlist.

You can apgly clustering to the data (after ];jlou remove the labels) to answer many questions. Here, your
first k is 3, but you can also experiment with other k values. Why?

Before performing k means clustering, assume that you assure only quantitate data and you remove and
save the labels.

Questions you can explore:

1) Do your labels match the cluster centroids (using k = 3)?

2)  Which features appear significant?

3)  What is the average GPA of students in each cluster? What are other average scores in each cluster?

4)  etc.




Common Clustering Categories

Partitional Clustering (such as k — means): divides data objects into
nonoverlapping groups. No object can be a member of more than one
cluster, and every cluster must have at least one object.

Hierarchical Clustering : determines cluster assignments by building a
hierarchy. This is implemented by either a bottom-up or a top-down
approach. These methods produce a tree-based hierarchy of points called a
dendrogram. - Agglomerative or divisive

Density Based Clustering : determines cluster assignments based on the
density of data points in a region. This approach doesn’t require the user
to specify the number of clusters. Instead, there is a distance-based
parameter that acts as a tunable threshold. Example : DBSCAN (Density-
Based Spatial Clustering of Applications with Noise)




. OR 1 and 37

Cholesterol weight Height
251 267 70
105 103 62
156 193 72
7000 100 63
198 210 70
189 189 64
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> (dM <- dist(HeartDF2_num, method = "manhattan'"))

9

Clustering Uses a Measure of Distance or Similarity

Distance by Hand...Which is “closer” - rows 1 and 2

Using Manhattan:

Dist(1, 2):
[251 267 70]
[105 103 62]

1(251-105)| + |(267-103)| + |(70-62)| = 318

Dist(1, 3)
[251 267 70]
[156 193 72]

abs(251-156) + abs(267-193) + abs(70-72) = 171
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coordinates only.

L,-norm:

dist(x,y) =
(A=43°)

=5

Some Euclidean Distances

* L, norm : d(x,y) = square root of the sum of the squares of
the differences between x and y in each dimension.

— The most common notion of “distance.”
* L, norm : sum of the differences in each dimension.
— Manhattan distance = distance if you had to travel along

y =(9,8)

L;-norm:
dist(x,y) =

X = (5,5)

4+3 =7

Note: The L3 norm, cubes the
differences and so no.

The L1 norm is often called
the Manhattan distance as it
is based on the idea of “block
distance” rather than point to
point direct distance.




. Intuition for Minkowski Distance

= p: Index of Minkowski Distance

= Points on the line have equal Minkowski Distance from
center

= R: Function “dist” Sulgsn

distance
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Manhattan Maximum

distance distance




Cosine Similarity

http://dataaspirant.com/2015/04/11/five-most-popular-similarity-measures-implementation-in-python/

. B _ A-B
sim(A, B) = cos(0) = —||A||||B|| 6

5

Manhattan:
4 dl(A, B) — 3
3 Euclidean:
5 d,(A, B) =3.6 <«— B

Cosine:
(A, B) = 41.6°
Cosine Similarity is non-
Euclidean.
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Import numpy as np

def cosine_sim(x, y):
x = np.array(x)
y = np.array(y)

if len(x) I= len(y) :
return None

dot_product = np.dot(x, y.T)

# Magnitudes of x and y
magnitude_x = np.sqrt(np.sum(x**2))
magnitude_y = np.sqgrt(np.sum(y**2))

# Cosine Sim and angle as degrees

cos_sim = dot_product / (magnitude_x *
magnitude_y)

angle=np.arccos(cos_sim)

angle=np.degrees(angle)

return cos_sim, angle
CS, Cos_angle=cosine_sim([[251,267,701], [[105,103,621])

print(CS)
print(Cos_angle)

Cosine Similarity = by hand - in Python

from sklearn.metrics.pairwise import cosine_similarity
import pandas as pd

DF = pd.read_csv("C:/Users/profa/Desktop/UCB/ML
CSCI 5622 /Data/HeartRisk JustNums.csv")

print(cosine_similarity(DF, DF))




Cosine similarity

.

Good for high D data.
1) Imagine that each row or data vector is a numerical vector.
2) Next, no matter what dimension you are using, the origin is (0, 0, ...0)
So in 2D the origin is (0,0) in 3D its (0,0,0) and so on.
3) Next, Any two vector points in any D space create an angle between them.
4) The COS of any angle is defined as the normalized dot product:
(V1.V2) / |V1] |V2]
Example: Suppose vector 1 (V1) is [1, 3] and suppose vector 2 (V2) is [2,2]
Then, the dot product V1. V2 =(1*2) + (3*2) = 8
Next, |[V1| =sqrt(172 + 372) = sqrt(10)
V2| =sqrt(272 + 2°2) = sqrt(8)
So COS()= 8/ (sqrt(8)*sqrt(10)) = .894
To solve for the angle, find the arccos (.894) = 26.6 degrees




Non-Euclidean distances

® Jaccard distance for sets = 1 minus
ratio of sizes of intersection and union.

® Cosine distance = angle between
vectors from the origin to the points in
guestion.

® £dit distance = number of inserts and
deletes to change one string into
another.

http://infolab.stanford.edu/~ullman/mining/pdf/cs345-cl.pdf




Some fun math: the axioms of a distance
measure

.

1) For any measure D to be a “distance measure” it must meet the
following properties:

(a) Given any two vectors x and y, D(x,y) >= 0. In other words,
distance cannot be negative.

(b) D(x, y) = 0 iff x = y. In other words, the only way the distance
between two vectors is O is if they are the same vector.

(c) D(x,y) = D(y,x). Direction does not matter.
(d) D(x, y) <= D(x,z) + D(z,y). This is called the Triangle Inequality.
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Partition vs. Hierarchical

 Partitional algorithms: Construct various partitions and then
evaluate them by some criterion (we will see an example called BIRCH)

» Hierarchical algorithms: Create a hierarchical decomposition of
the set of objects using some criterion

Hierarchical Partitional

EPTEMBER 14, 2020 18



Hierarchical Clustering

Two main types of hierarchical clustering

Agglomerative:
Start with the points as individual clusters

At each step, merge the closest pair of clusters until only one cluster (or k
clusters) left

Divisive:
Start with one, all-inclusive cluster

At each step, split a cluster until each cluster contains a point (or there are
k clusters)

Traditional hierarchical algorithms use a similarity or
distance matrix
Merge or split one cluster at a time




Hierarchical Clustering

1) It is not
necessary to

Produces a set of nested clusters organized choose or
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GNES and DIANA

Hierarchical clustering can be divided into two main types:

Agglomerative clustering: Commonly referred to as AGNES (AGglomerative NESting) works in a bottom-up
manner. Each observation (vector or row) is initially considered as a single-element cluster.

At each step of the algorithm, the two clusters that are the most similar are combined into a new bigger
cluster. This procedure is iterated until all points are a member of just one single big cluster

Divisive hierarchical clustering: Commonly referred to as DIANA (Dlvise ANAlysis) works in a top-down
manner.

Begins with the root - all observations (all rows) are in a single cluster. At each step of the algorithm, the
current cluster is split into two clusters that are considered most heterogeneous. The process is iterated
until all observations are in their own cluster.




ommon Clustering Methods (FYI only)

Maximum or complete linkage clustering: Computes all pairwise dissimilarities between the
elements in cluster 1 and the elements in cluster 2, and considers the largest value of these
dissimilarities as the distance between the two clusters. It tends to produce more compact clusters.

Minimum or single linkage clustering: Computes all pairwise dissimilarities between the elements i
cluster 1 and the elements in cluster 2, and considers the smallest of these dissimilarities as a
linkage criterion. It tends to produce long, “loose” clusters.

Mean or average linkage clustering: Computes all pairwise dissimilarities between the elements in
cluster 1 and the elements in cluster 2, and considers the average of these dissimilarities as the
distance between the two clusters. Can vary in the compactness of the clusters it creates.

Centroid linkage clustering: Computes the dissimilarity between the centroid for cluster 1 (a mea
vector of length p, one element for each variable) and the centroid for cluster 2.

Ward’s minimum variance method: Minimizes the total within-cluster variance. At each step the
pair of clusters with the smallest between-cluster distance are merged. Tends to produce more
compact clusters.




Cluster Dendrogram

DIANA

Mississippl

South Canolina

North Canlina

https://bradleyboehmke.github.io/HOML/hierarchical.html



Single Linkage

Complete Linkage
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= Types of Clusters: Density-Based
TU

Density-based

o A cluster is a dense region of points, which is separated by
low-density regions, from other regions of high density.

- Used when the clusters are irregular or intertwined, and when
noise and outliers are present.

Non-spherical <
clusters B




Limitation of k-means
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DBSCAN: Density-Based Clustering

DBSCAN is a Density-Based Clustering algorithm

Reminder: In density based clustering we partition points
into dense regions separated by not-so-dense regions.

Important Questions:
* How do we measure density?
= What is a dense region?

DBSCAN:

= Density at point p: number of points within a circle of radius Eps

Dense Region: A circle of radius Eps that contains at least
MinPts points




Visual Example of k - means

> 1) Choose k
> 2) Randomly choose k centroids

> 3) Place all points into one of the k clusters based on
distance.

: Repeat steps 4 and 5 for N iterations
» 4) Update the centroids

> 5) Re-assign points to closest cluster =




Choose k
=3 .




Randomly Choose Initial Centroids




Place Points into Closest Cluster




Update Centroids




Re- calculate ALL
distances from

points to
centroids and re-
assign points to
centroids as
needed.




Recalculate

UB% Centroids




Importance of Choosing Initial

Centroids
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4 Choosing k: Elbow Method

> Elbow Method : There is an “bending” point where the SSE (sum
squared error) curve starts to bend known as the elbow point. The x-
value of this point is thought to be a reasonable trade-oft between
error and number of clusters. The elbowpoint is the point where the
rate of decrease of mean distance (from points to their centroid) will
not change significantly with increase in number of clusters.

Elbow Method For Optimal k

2 + 6 8 10 12 “
K

https:/ /nzlul medium.com/ clustering-method-using-k-means-hierarchical-and-dbscan-using-python-5ca5721bbfc3
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Silhouette Method

Silhouette Score Elbow for KMeans Clustering

> Silhouette Coefficient : is a
measure of cluster cohesion
and separation. It quantifies
how well a data point fits into
its assigned cluster based on
two factors: How close the
data point is to other points
in the cluster and how far
away the data point is from
points in other clusters. 2 ] A

wm  ebhowatk =5, score = 0,559

silhouette score
(=] (=] o
& 3 bl

=3
&

o
&

ettt

6 7

> Silhouette coefficient values
range between -1 and 1.
Larger numbers indicate that
samples are closer to their
clusters than they are to other
clusters.

https:/ /nzlul medium.com/ clustering-method-using-k-means-hierarchical-and-dbscan-using-pvthon-5ca5721bbfc3




ibrary("factoextra")
Il fviz_nbclust(MyDF, kmeans, method='silhouette’, k. max=5))

Optimal number of clusters

et .t
N w
1 1

<
-h

Average silhouette width

S
o
1

1 2 3 4 5
Number of clusters k




Part 2

The Math and Code Behind K Means



By Hand - In Python
https://gatesboltonanalytics.com/?page_id=924

The Code Using Sklearn in Python
https://gatesboltonanalytics.com/?page_id=262
and

https://scikit-
learn.org/stable/modules/generated/sklearn.cluster
KMeans html

.Wn Install User Guide API Examples Communityl@ More ¥ Q O 1.5.2 (stable) ~ E

BisectingkMeans A > APl Reference > sklearn.cluster > KMeans

DBSCAN

FeatureAgglomeration KM ea n S

HDBSCAN

KM class sklearn.cluster.KMeans(n_clusters=8, *, init='k-means++', n_init='auto', max_iter=300,
MeanShift tol=0.0001, verbose=0, random_state=None, copy_x=True, algorithm='Lloyd") [source]

MiniEatehKhieans K-Means clustering.

OPTICS Read more in the User Guide.

SpectralBiclustering

. Parameters:
SpectralClustering

SR TAICHESTETTG n_clusters : int, default=8



https://gatesboltonanalytics.com/?page_id=924
https://gatesboltonanalytics.com/?page_id=262
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html

U3 K Means - the Math and EM

Suppose we have a dataset {X;, X5, ...,.X.}
We choose k, the number of clusters.
Let p, be the centroid (mean) of cluster k.

Goal: Assignment points to clusters so that the sum of the
square distances between points and their closest cluster

IS minimized.

For each datapoint x., let r, in{0,1} be a binary indicator
function such that if x, is assigned to p, thenr, = 1.




What is our Loss (or Objective) Function that
we want to Optimize?

.

L= LL’:A“X: I‘k“Q-

k=1 1=1

where ;. = 1 if X; € S;. and 0 otherwise.

Our goal is to find values of p, and r; that minimize L.




U3 Steps:

Initialization: Choose p,

1) E Step: Update r,,

Minimize L wrt r,, while keeping p, fixed.

To do this, we place points into their closest clusters.
2) M Step: Update p,

Update L wrt p, while keeping fixedr;, .

To do this, we recalculate each cluster mean, p, based on the
points in those clusters.

3) Repeat until convergence. Note that convergence may not be
to a global min.




U3 Make sure it makes sense loss-wise

K n

L= Z Z rikl|xi — gl
k=1 3=1

-‘a where 7. = 1 if X; € S). and 0 otherwise.




The Math: The best r; . liiu”x o

=] =1

.

where ;. = 1 if X; € S and 0 otherwise.

The E Step:
> All data points are considered to be independent.

> Therefore, we can choose r; to be 1 for whichever k gives
the minimum value of ||x; - pk | 2. This just means that
we can place all the points in their “closest” clusters.




The Math: The best mean
The M Step: Updating p, with ry fixed.

L= Z Z rikl[xi — p I

k=1 i1=1

where ;. = 1 if X; € S and 0 otherwise.

Here, the denominator is the number of points

Take dL/dry = 2 z” X~ i) assigned to cluster k (because otherwise it is 0).

Set this to 0 and solve.

We get: U = zn r X/ zn Y So in short, this is just the mean (average) of the points
in each cluster for all k clusters.




In Summary

1) First, choose k.
2) Next, randomly choose points to represent each cluster center.

n

K
L= lxi—mel® =Y ) rielixi — el

k €S k=1 i=1
Not analytically solvable. Not convex. Gradient descent can be messy.

Alternative approach (Lloyd’s algorithm): iteratively optimize over 7,
and over p1..

* For fixed p.: assign each point X; to the nearest cluster center.

Assign each point to the
nearest cluster

i € Sy if k = argmin ||x; — uj||2.

e For fixed r;1.:
ik 1 Calculate the mean of each cluster

Z Xi. - mean of the points currently
i€Sk assigned to it.




Repeat Until Convergence

Here, we repeat the EM steps until we converge.
Convergence may not result in a global min.
In words, the two phases are:

E: Reassign points (this updates r; )
M: Calculate the mean (this updates p, )




2

=

s
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Bishop, Pattern Recognition and Machine Learning Blﬂl‘_)p. Pattern ngnin’mcnd Machine Learning

For K-means, The Expectation(E) step is where each data
point is assigned to the “nearest” cluster and the
Maximization(M) step is where the centroids are
recomputed using the mean of the points in that centroid.




U% Notes

1) The K means algorithm is generally based on the use of
the Euclidean distance and the measure of similarity.

2) This limits the type of data that can be considered as “/t
would be inappropriate for cases where some or all of

the v?riab/es represented categorical labels” (Bishop,
2006




Part 3:

Mild Introduction to Expectation
Maximization for Gaussian Mixture Models



Expectation Maximization (EM)

v

v

v

v

The Expectation-Maximization algorithm is a very influential and widely
used machine learning algorithm.

K-means is special variant of the EM algorithm with the assumption that
the clusters are spherical and we use only the mean to determine a
cluster centroid (not a standard deviation as well).

EM is a method to find the maximum likelihood estimate of parameters,
8, in a latent variable model.

EM is made up of an “E” step and an “M” step. It starts with random
values for the parameters, 0, and then alternates between:

In the E step, the algorithm computes the latent variables - expectation
of the log-likelihood using the current parameter estimates.

In the M step, the algorithm determines the parameters that maximize the
expected log-likelihood obtained in the E step, and corresponding model
parameters are updated based on the estimated latent variables.
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v

v

v

v

v

v

v

v

Example:

Suppose you are a hiker and are interested in the temperature and humidity distribution
during both summer and winter in Colorado.

You ask a friend who lives in CO to gather N temperature and humidit data?,oints SO you
can calculate the mean and variance. You are assuming a gaussian distribution.

BUT, (pretend with me here), your friend gives you the N datapoints *without* telling you
whether they were gathered them during summer or winter.

In this case, the season (summer or winter) is now a latent variable.

Next, at this moment, we are missing two bits of information. For an)é given datapoint, we do
not know the season it was gathered in. In addition, we also do not ’know the mean and
variance for each season.

One more note: If we knew which season (summer or winter) each datapoint came from, we
could solve this fast, Just take the mean and variance for the points gathered in that
season. But we dont!

Also, if we knew the mean and variance for each season, then we could place all datapoints
into the correct gaussian (season) based on which it is closer to. But we don't.

In cases like these, we use EM.




TU

EM Assumptions and a Random Start

In EM (and in kmeans) - we must know “k”.

In k means, k is the number of clusters (latent variables) we have. In EM, it is the number of distributions (latent)
that we have.

In our example, we have k = 2, Summer and Winter.

> Next, in EM, we start the algorithm by randomly choosing our parameters and then assigning all points to
whichever they are “closest to”. Technically, we need to ML here - but we will come back to that.

v

In k-means, this was easy because our “parameters” are just the means of our centroids. We can initialize
kmeans by randomly choosing our initial centroids (means).

v

However, suppose we have a Gaussian Mixture instead. This means we have two parameters: mean and
variance for each Gaussian. We will still choose them randomly and we will still “assign” all the points to them
based on a measure of similarity. However, assigning points in k means only requires a distance metric (like
Euclidean distance). Assigning points to gaussians is a little bit more complicated (but not much!)

v

NOTE: Mahalanobis Distance is used to measure the “distance” between a datapoint and a gaussian
distribution.

Given a probability distribution ) on RY, with mean = (v fios gy eens uN)T and positive semi-definite
covariance matrix S, the Mahalanobis distance of a point Z = (z1, @2, Z3, ..., Zx)" from Q islf]

du(&,Q) = /(& - i)TS™' @ — A).




EM for Gaussian Mixture Models (GMMs)

> Note that EM can be applied broad

y. GMMs is one

example that is useful in explaining how EM works.

> To explain EM as applied to GMM, we will need to gain
some understanding of GMM, of Maximum Likelihood

(ML), and then of EM.




Gaussian Mixture Models

Gaussian mixrure: ‘

.

Here, we are
looking at GMs in
terms of discrete
latent variables.

K
pix) = Z N (X | e, ). p(z=1) = m, where
k=1 z defines a “cluster” —
in this case — a
Gaussian.

Intuitively, we could use the same iterative approach as in the Lloyd’s
For example, if we have a

algonthm fOI' l\ -means: mixture of 3 Gaussians, then a
point x can be a member of a
gaussian with probability such
that the sum of the probabilities

1) Assign each point to the "closest” gaussian. is 1
2) Update the parameters of the gaussians based Ifzk =1,
on their assigned points.




Likelihood in GMM

(]

Gaussian mixture:

K
p(x) = > mN(x | g Zi). y
k=)
Log-likelihood: -2
n K =, 0 (f) 2
L= Z log Z N (X | s i) | s
i=] k=1
where N(x; | sy, Zg) = ...exp( — %(xi - uk)TEI.'(xi — ).
Set the derivative with respect to pz;. to zero:
8 'y N Xi )
Z KL (Xi | gy L) S (X; — j.) = 0.
i=1 Zuj=1 N (Xi | Ilyzj)l )
:Tk Z zik(Xi — ) = 0.
t=]
2 ZikXi

By = .
2 Zik
This is a weighted mean of all points.

Very similar derivation shows that . should be the weighted covariance
matrix, and 7 = Y zi /n.
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Important:
Notice that the
colors range.
This is because
each point is 0
assigned to a
Gaussian using
probability (not
just 0 or 1like in
kmeans).
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Bishop, Pattern Recognition and Machine Learning
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Bishop, Pattern Recognition and Machine Learning Bishop, Pattern Recognition and Machine Learning

Expectation-maximization algorithm iteratively alternates between
updating pt;.. Xy, 7 and updating z;y.:

* E-step: compute the posterior probability z;4 for each point to be in
each Gaussian component.

* M-step: update the parameters (g2, 3y, 1) of each Gaussian using
weighted averages.

EM is a very generic algorithm to optimize likelihood in probabilistic
models with latent variables. (In GMMs, latent variables are true class
memberships.) E-step computes posterior over latent variables,
conditioned on the parameters of the model. M-step optimizes the

parameters, conditioned on the latent variables.
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Bishop, Pattern Recognition and Machine Learning

Notice that the
final gaussians
have different
means and
variances.
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